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Abstract—We developed a model for the motion of a rigid body
triple pendulum in MATLAB. We used Lagrangian methods to
derive the equations of motion for each of the rigid bodies. The
model includes a series of 3 coupled oscillators, and given an
initial position and/or an initial velocity to any of the masses, we
can calculate the motion of the triple pendulum. Using MATLAB,
we were able to evaluate the position of the pendulum through
the numberical integrator, ODE45. We compared our model to
experimental data taken from an actual triple pendulum, and
found that they agreed very well with the periodic patterns.

I. BACKGROUND

In preparation for modeling the triple pendulum, we re-
viewed the related notes and lectures from Professor Christo-
pher Lee regarding the equations of motion, energy equations,
as well as Lagrangian Methods. When modeling the triple
pendulum, we consider the movement to be 2 Dimensional,
rotating about the z-axis. Lagrangian equations are based off
the energy of the system, thus showing whether or not energy
is conserved within the system (in which our case, energy is
conser ed).
For the experiement, we continued to use the same double
pendulum as our past experiment with an additional link.
Using motion tracking software, we were able to retriethe
posdata (Thanks to Nick Eyre and Jeff Holzgrafe) in terms of
time, position, and velocity. We import this data into MATLAB
and compare it to our simulated data.

Fig. 1. CAD Model of the Triple Pendulum

II. LEARNING OBJECTIVES

This entire semester, we have been working with pendulum
models. We have derived the equations of motion previously
using forces in cartesian coordinates and each time wound up
with 5-10 pages of derivations. We wanted to use this project
to teach ourselves Lagrange’s equations, which are specifically

useful applied to pendulum systems and can simply the
algebra significantly. Having successfully modelled a rigid
body double pendulum, we decided to take on the challege of
modellling a rigid body triple pendulum. We wanted to further
study chaotic behavior through comparison of the simulation
and the experiment. Specifically, under what initial conditions
is the model more prone to chaotic behavior? Under what
conditions does it behave periodically? Given this, in which
situations does our simulation match the experiment for an
extended period of time?

III. SYSTEM MODEL

When modeling a triple pendulum, a clear choice for the
generalized coordinates are the angles, θ1θ2θ3, since x and y
in cartesian coordinates are coupled to each other.

Fig. 2. Diagram of our system

Our system includes the moments of inertia for each of
the three rigid bodies, assuming uniform density across the
bodies. The values for the moments of inertia come from
the values in the CAD model of the actual pendulum. We
did not include damping forces in our model. All the initial
conditions (position, velocity) and system parameters (mass,
length) for each of the links in the simulation were taken from
the experimental data and CAD model, in order to make the
models match as closely as possible.

To derive the equations of motion using Lagrange’s
equations, we first calculated kinetic energy (T) and potential
energy (U). Our state variables (xi, ẋi, yi, ẏi) define the
position of the center of mass of each of the rigid bodies in
cartesian coordinates.
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Lagrangian Method takes the difference of kinetic energy
and potential energy, L = T − U .

IV. RESULTS

A. Conservation of Energy

As a prelimiary check to validate our model, we plotted the
energies over the duration of the simulation. The Total Energy
is conserved, as shown in figure 3

Fig. 3. Energy is conserved

B. Path of Links

Figure 4 shows the range of motion of each of the links over
the time span of the simulation. As is expected, the motion
of Link 1 is periodic, while the motion of links 2 and 3
have wider ranges of motion because of the added degrees
of freedom.

Fig. 4. Link 3 has the widest range of motion

C. Position over Time

The positions of the third link have the higest fluctuation,
due to its 3 degrees of freedom. The experimental and simu-
lated position are offset due to experimental delay.

Fig. 5. The simulation and experimental data mostly match, save for the
time delay offset

D. Velocity over time

The velocities of the third link have the higest fluctuation,
due to its 3 degrees of freedom. Once again, the experimental
and simulated position are offset due to experimental delay.

Fig. 6. Link 3 has the widest range of velocities

V. ANIMATION

This is a snapshot of the animation as it runs. The animation
displays the periodic movement of the pendulum.



Fig. 7. Animation Capture

VI. DIAGNOSIS

We originally tried to derive the equations of motion by
hand, as we have done in the past. After several failed
attempts to derive the correct equations, we decided to try
using Mathematica. Although this involved the added task of
learning how to use Mathematica software, it turned out to be a
good decision. This allowed us to solve for long, complicated
equations with minimal mistakes. However, processing the
experimental data in MATLAB took more time than initally
expected.

VII. IMPROVEMENT

Most prominently, our model could be improved by adding
viscous damping to the system. This would increase the
accuracy of the simulation compared against the experiment.
Furthermore, we could strengthen the model by no longer
assuming that the masses have uniform density. This would
complicate our moments of inertia and significantly complicate
the model.

VIII. REFLECTION

Throughout this project, we learned how to use Lagrangian
equations applied to a complex model. As opposed to our
past experiements and analyses, we used Mathematica, a
highly useful software, in order to solve for the equations of
motion. We also improved at debugging MATLAB, diagnosing
algebraic errors, and intuitively predicting how the model
should behave.

IX. CONCLUSION

Because the initial positions of the pendulum’s links were
between 0 and 90 degrees, the behavior of the pendulum was
fairly periodic and had no chaotic movements. Compared to
the experimental data, the model closely matched the periodic
movements of the pendulum, with the exception of a time
offset. This delay was caused by holding the links at the start of

the experiment, thus not releasing the pendulum immediately
at time zero. Comparing our results with experimental data
and with our past experiments, we were able to observe the
accuaracy of modeling periodic systems and the difficulty in
modeling a chaotic system.

X. FURTHER USAGE

Modeling a triple pendulum provides the opportunity to
work through a complex system with a unique set of problems.
The jump from from a double pendulum to a triple pendulum is
significant, so much so that the algebra to derive the equations
of motion necessitates a computer program. Also, a triple
pendulum is a great vehicle to observe the behavior of chaotic
systems.


